

ОЦЕНКА ГРАВИТАЦИОННОГО ВЛИЯНИЯ НЕБЕСНЫХ ТЕЛ НА ДВИЖЕНИЕ ПОЛЮСА ЗЕМЛИ

Трунев Александр Петрович к. ф.-м. н., Ph.D. Директор, *A&E Trounev IT Consulting, Торонто, Канада*

В работе исследовано возмущенное движение полюса Земли обусловленное гравитационным воздействием небесных тел.

Ключевые слова: ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ, ДВИЖЕНИЕ ПОЛЮСА ЗЕМЛИ, НУТАЦИЯ, ПРЕЦЕССИЯ Chaos and Correlation International Journal, October 28, 2010

ESTIMATION OF THE CELESTIAL BODIES GRAVITATION IMPACT ON THE EARTH POLAR MOTION

Alexander Trunev Ph.D. Director, A&E Trounev IT Consulting, Toronto, Canada

Earth polar motion versus celestial bodies' positions is estimated.

Keywords: COMPUTATIONAL EXPERIMENT, EARTH POLAR MOTION, NUTATION, PRECES-SION

Введение

В работе /1/ была обнаружена взаимосвязь смещений географического полюса Земли с изменением положения небесных тел Солнечной системы. В работе /2/ развита модель вынужденной нутации, основанная на гипотезе о существовании гравитационного механизма обмена механическим моментом в Солнечной системе. В настоящей работе дана оценка моментов сил, обусловленных гравитационным воздействием небесных тел. Показано, что Солнце, Луна, Юпитер, Сатурн, Уран и Нептун вносят существенный вклад в динамику движения полюсов.

При создании моделей в настоящей работе были использованы данные по координатам географического полюса – Х, Ү /3/, данные по индукции магнитного поля Земли /4/, а также данные по сейсмическим событиям /5/.

В качестве астрономических параметров были использованы долгота (LON), широта (LAT) и расстояние – R, от Земли до девяти небесных тел – Солнца, Луны, Марса, Меркурия, Венеры, Юпитера, Сатурна, Урана и Нептуна. Астрономические параметры вычислялись на каждый день в фиксированной точке с географическими координатами Гринвича в 12:00 GMT в топоцентрической системе координат. Отметим, что выбор этой точки не является существенным для решаемого класса задач.

Модель движения полюса Земли

Стандартная модель движения полюса Земли может быть выведена из уравнений Эйлера с переменным тензором инерции /6-8/. В качестве основы используется уравнение изменения механического момента во вращающейся системе координат

$$\frac{d\mathbf{\vec{L}}}{dt} + \left[\vec{\Omega}\vec{\mathbf{L}}\right] = \vec{\mathbf{K}}$$
(1)

Здесь $\vec{\Omega}, \vec{L}, \vec{K}$ – угловая скорость вращения Земли, угловой момент и угловой момент сил соответственно. Угловой момент связан с угловой скоростью и тензором инерции по формуле

$$L_i = I_{ik}\Omega_k + \delta L_i \tag{2}$$

Где δL_i – относительный угловой момент, обусловленный перемещением текучих сред относительно центра масс

$$\delta \vec{\mathbf{L}} = \int \rho \left[\vec{\mathbf{r}} \vec{\mathbf{v}} \right] dV \tag{3}$$

Проецируя уравнения (1) на главные оси инерции, находим систему уравнений в форме Эйлера:

$$A\Omega_{1} + (C - B)\Omega_{2}\Omega_{3} = K_{1}$$

$$B\dot{\Omega}_{2} + (A - C)\Omega_{1}\Omega_{3} = \widetilde{K}_{2}$$

$$C\dot{\Omega}_{3} + (B - A)\Omega_{1}\Omega_{2} = \widetilde{K}_{3}$$
(4)

Здесь \widetilde{K}_i – эффективный угловой момент сил с учетом вариаций углового момента и тензора инерции. Главные моменты инерции Земли приведены в таблице 1.

Таблица 1. Главные моменты инерции, константы вращения Земли и мировые константы по данным /3/

Название	Символ	Величина	Единица измерения	Ссылка
Equatorial moment of inertia	Α	8.0101	$10^{37} kg m^2$	IAG 1999
Equatorial moment of inertia	В	8.0103	$10^{37} kg m^2$	IAG 1999
Axial moment of inertia C	С	8.0365	$10^{37} kg m^2$	IAG 1999
Longitude of the principal inertia axis A	$\lambda_{ m A}$	-14.9291	o	IAG 1999
Mean angular velocity of the Earth	Ω	7.292 115	10 ⁻⁵ rad/s	IAG 1999
Nominal angular velocity of the Earth	$\Omega_{ m N}$	7.292 115 146 706 4	10 ⁻⁵ rad/s	epoch 1820
Chandler period (in the terrestrial frame)	Tc	433.1	mean solar day	/9/
Conventional duration of the mean solar day	D	86 400	S	
Gravitational constant	G	6.6742	$10^{-11} \text{ m}^3 \text{kg}^{-1}\text{s}^{-2}$	CODATA
light speed in ether	c	299 792 458	ms ⁻¹	CODATA

Полагая в первом и втором уравнениях системы (4) $\Omega_3 = \Omega = \text{const}$, получим линейную подсистему, собственная частота которой определяется в виде

$$\omega_E = \Omega \sqrt{(C - A)(C - B)/AB}$$
(5)

Используя данные, приведенные в таблице 2, находим, что период колебаний, соответствующий частоте (5), составляет 304 солнечных суток. В этом случае система (4) описывает нутацию Эйлера, т.е. движение полюса недеформируемой Земли. Реально же Земля имеет сложное строение, включающее мантию и ядро. В случае вязкоупругой модели Земли частота собственных колебаний системы (4) отличается от частоты нутации Эйлера (5), а период колебаний по данным /9/ составляет 433,1 солнечных суток (см. таблицу 1), по данным /10/ - 415-490 солнечных суток (данные для FCN), по данным же /11/ диапазон изменения составляет 270,9-628,7 дней. В теоретических моделях период колебаний обычно принимается постоянным / 7, 12/.

Такой разброс фундаментальных параметров свидетельствует о сложном явлении, которое моделируется простой системой (4). Возникает также вопрос о механизме возбуждения колебаний оси вращения Земли и их связи с сейсмической активностью /8, 11, 13/. Поскольку уже установлена связь высокочастотных колебаний полюса с океаническими и атмосферными приливами /14-19/, следует предположить, что годичные, чандлеровские и другие низкочастотные составляющие колебаний полюса Земли также обусловлены движением небесных тел, вызывающих приливы /6-8, 11/. Ниже дана оценка моментов сил в правой части системы (4) на основе данных /3/ и гипотезы о гравитационном механизме обмена угловым моментом в Солнечной системе /2/.

Оценка угловых моментов сил

Запишем первые два уравнения модели (4) в виде:

$$\begin{aligned} A\ddot{X} &= Aa_1\dot{Y} + \widetilde{K}_1 \\ B\ddot{Y} &= Ba_2\dot{X} + \widetilde{K}_2 \end{aligned} \tag{6}$$

Основная проблема, связанная с исследованием угловых моментов сил в системе (6), заключается в нерегулярном поведении второй производной параметров движения полюса, возникающей при численном дифференцировании экспериментальных данных /3/ или любых других. Чтобы обойти эту трудность в работе /2/ была построена модель линейной регрессии, замещающая систему (6), с использованием 27 комбинаций астрономических параметров, характеризующих влияние каждого небесного тела:

$$P_{i1} = \frac{\sin LAT_{i}}{R_{i}} - \frac{\cos \vartheta_{e}}{R_{i}}$$

$$P_{i2} = k_{i} \frac{\cos LAT_{i} \sin LON_{i}}{R_{i}} - \frac{\sin \vartheta_{e}}{R_{i}}$$

$$P_{i3} = k_{i} \frac{\cos LAT_{i} \cos LON_{i}}{R_{i}}$$

$$k_{i} = \sin \vartheta_{e} \cos LAT_{i} \sin LON_{i} + \cos \vartheta_{e} \sin LAT_{i}, \quad i = 1, 2, ..., 9$$
(7)

Здесь $\vartheta_e = 23,439291^{\circ}$ - угол наклона земной оси относительно нормали к орбитальной плоскости. Отметим, что данные для расстояний от Земли до небесных тел вычисляются в формулах (7) в астрономических единицах. Модель /2/ можно записать в виде

$$\dot{x}(n) = a_1 y(n) + b_1 + \sum_{j,k} \widetilde{c}_{jk} P_{jk}(n), \quad 1 \le n \le N$$

$$\dot{y}(n) = a_2 x(n) + b_2 + \sum_{j,k} \widetilde{d}_{jk} P_{jk}(n), \quad 1 \le n \le N$$
(8)

Как известно, на протяжении 100 лет наблюдается дрейф полюса со средней скростью около 3,9 мс/год в направлении 65,7°W /8/ (по другим данным скорость дрейфа составляет 3,5 мс/год в направлении 75°W /22/). Для учета этого явления в правой части уравнений (8) введены константы скорости.

Сравнивая (6) и (8), находим, что интегралы по времени от угловых моментов представляются в виде рядов, учитывающих влияние небесных тел. На рис. 1-2 представлены данные /3/ для угловой скорости движения полюса вместе с расчетными данными /2/.

Учитывая неплохое согласие экспериментальных и расчетных данных, полученное на основе модели /2/, заместим модель (6) на модель линейной регрессии, используя гладкие функции, представленные на рис. 1-2, имеем

$$\begin{aligned} A\ddot{x}(n) &= Aa_{1}\dot{Y}(n) + \sum_{j,k} c_{jk}P_{jk}(n), & 1 \le n \le N \\ B\ddot{y}(n) &= Ba_{2}\dot{X}(n) + \sum_{j,k} d_{jk}P_{jk}(n), & 1 \le n \le N \end{aligned}$$
(9)

Отметим, что модель (9) позволяет прямо оценить величину угловых моментов сил отдельных небесных тел по коэффициентам линейной регрессии. На рис. 3 представлены абсолютные значения коэффициентов корреляции угловых моментов сил с комплексами (7). Эти данные показывают, что Солнце, Луна и планеты гиганты – Юпитер, Сатурн, Уран, Нептун, вносят определяющий вклад в динамику полюса Земли.

На рис. 4-9. представлены оценки угловых моментов сил, действующих на Землю со стороны небесных тел Солнечной системы. Амплитуда углового момента силы гравитации Солнца составляет приблизительно 2,5*10¹⁹ кг m^2/c^2 . Амплитуда момента сил гравитации Луны приблизительно в 2 раза больше, чем амплитуда момента сил гравитации Солнца – рис. 5.1-5.2 (из-за высокой частоты колебаний на рис. 5.2 просматривается только огибающая моментов сил). Амплитуда момента сил гравитации от Марса и Меркурия на порядок меньше, чем от Луны, тогда как амплитуда момента силы гравитации Венеры в отдельные периоды сопоставима с аналогичной амплитудой от Солнца – рис. 6. Отметим, что влияние Венеры на движение http://chaosandcorrelation.org/Chaos/CR10_2010.pdf полюса ранее было обнаружено в работе /11/ на основе спектрального анализа.

Угловые моменты силы гравитации от Юпитера и Сатурна содержат синодическую и сидерическую составляющие, связанные с периодом обращения планет вокруг Солнца - рис. 7. Амплитуда сидерической составляющей момента силы гравитации Сатурна почти совпадает с амплитудой момента силы гравитации Солнца, тогда как сидерическая составляющая момента силы гравитации Юпитера несколько меньше (хотя масса Юпитера в 3,35 раза превосходит массу Сатурна). Для этих небесных тел амплитуды синодической и сидерической составляющей соизмеримы между собой.

В случае Урана и Нептуна амплитуда сидерической составляющей углового момента силы гравитации значительно превосходит амплитуду синодической составляющей – рис. 8. Полный размах колебаний углового момента силы гравитации от Урана и Нептуна на порядок превосходит

амплитуду углового момента силы гравитации Солнца и Луны соответственно.

Столь сильное влияние Урана и Нептуна на движение полюса требует пояснения. Во-первых, как было установлено в работе /1/, Уран и Нептун оказывают столь же сильное влияние и на магнитное поле Земли. Во-вторых, как было показано в работе /2/, существуют значимые коэффициенты корреляции средних параметров сейсмической активности с комплексами P_{ik} Урана и Нептуна – таблица 2. Следовательно, сильное воздействие Урана и Нептуна на движение полюса, сейсмическую активность и магнитное поле

земли обусловлено общим механизмом, который, видимо, имеет релятивистскую природу /2/.

Таблица 2. Коэффициенты корреляции средних параметров сейсмической активности с комплексами P_{ik} Урана и Нептуна на протяжении 16032 дней /2/: SUM, SUM_M, SUM_E, SUM_V – ежедневное число, суммарная магнитуда, суммарная энергия и суммарный объем землетрясений с магнитудой $m_b \ge 4$; AVR_M, AVR_E, AVR_V – средние значения магнитуды, энергии и объема.

	SUM	SUM_M	SUM_E	SUM_V	AVR_M	AVR_E	AVR_V
URANUS1	0,325	0,313	0,188	0,163	-0,136	-0,292	-0,286
URANUS2	-0,0206		0,103	0,0668	0,176	-0,105	-0,104
URANUS3	-0,349	-0,33	-0,104	-0,13	0,222	0,236	0,226
NEPTUNE1						0,0252	0,0215
NEPTUNE2	-0,264	-0,238		-0,0309	0,256	0,0549	0,0507
NEPTUNE3	-0,473	-0,456	-0,292	-0,269	0,206	0,458	0,442

Действительно, во вращающейся системе координат, в которой справедливо уравнение (1), Нептун движется с субсветовой скоростью (см. / 2/- рис. 4). В свою очередь, во вращающейся системе координат, связанной с Ураном, Земля движется с субсветовой скоростью (см. /2/ - рис 8). И хотя в этих случаях выбранные системы координат не являются инерциальными, тем не менее, скорость света остается важным параметром, характеризующим причинные связи, как в гравитационном, так и в электромагнитном взаимодействии.

Гравитационные волны в Солнечной системе

Как следует из общей теории относительности Эйнштейна, гравитационные волны являются поперечными, а их излучение связано с изменением моментов инерции или квадрупольного момента системы тяготеющих масс /20/. Изменение энергии и среднее по времени изменение момента импульса системы при излучении гравитационных волн можно представить в виде /20-21/:

$$\frac{dE}{dt} = -\frac{G}{45c^{5}} \sum_{\alpha,\beta} \ddot{D}_{\alpha\beta} \ddot{D}_{\alpha\beta}
\left\langle \frac{dL_{\alpha}}{dt} \right\rangle = -\frac{2G}{45c^{5}} \sum_{\beta,\gamma,\delta} e_{\alpha\beta\gamma} \left\langle \ddot{D}_{\beta\delta} \ddot{D}_{\gamma\delta} \right\rangle$$

$$D_{\alpha\beta} = I_{\gamma\gamma} \delta_{\alpha\beta} - 3I_{\alpha\beta}
I_{\alpha\beta} = \int \rho \left(r^{2} \delta_{\alpha\beta} - x_{\alpha} x_{\beta} \right) dV$$
(10)

Здесь ρ - плотность массы тела, другие обозначения см. в таблице 1. Даже в двойных звездах эффект излучения гравитационных волн является крайне малым из-за большой величины скорости света и малой величины гравитационной постоянной. Видимо, поэтому гравитационные волны не были обнаружены вплоть до последнего времени. С другой стороны, если рассматривать систему Земля-Нептун во вращающейся системе координат, в которой справедливо уравнение (1), тогда порядок величины изменения энергии и момента импульса системы можно оценить на основе задачи об излучении гравитационных волн парой тел, движущихся по круговым орбитам, имеем (см. /21/, стр. 454):

$$\dot{E} = \Omega \dot{L}_z = -\frac{32G\mu^2 \Omega^6 r^4}{5c^5}$$
(11)

Здесь μ - приведенная масса. Положим в правой части (11) $\Omega r \approx c$, что справедливо в системе Земля-Нептун в системе координат, связанной с поверхностью нашей планеты. Отсюда находим оценку

$$\dot{E} = \Omega \dot{L}_z \approx -\frac{32G\mu^2\Omega}{5r}$$
(12)

Уравнение (12) предсказывает, что из-за потери углового момента при излучении гравитационных волн, угловая скорость вращения нашей планеты убывает со временем по закону

$$\Omega = \Omega_0 \exp(-\lambda t), \lambda \approx k \frac{G\mu^2}{cI_{33}}$$
(13)

Здесь k – численный коэффициент. Выражение (13) интересно тем, что оно не содержит никакой характеристики системы Земля-Нептун, кроме приведенной массы.

Заметим, что в современных исследованиях вращения Земли широко используется модель вязкоупругого твердого тела /6-19/. Было установлено / 2/, что модель (9) также содержит вязкие слагаемые, описывающие затухание колебаний полюса Земли – см. рис. 1-2. С учетом вязкости модель (9) можно представить в виде:

$$A\ddot{x}(n) = -A\lambda_{1}\dot{x} + Aa_{1}\dot{y}(n) + \sum_{j,k} c_{jk}P_{jk}(n), \quad 1 \le n \le N$$

$$B\ddot{y}(n) = -B\lambda_{2}\dot{y} + Ba_{2}\dot{x}(n) + \sum_{j,k} d_{jk}P_{jk}(n), \quad 1 \le n \le N$$
(14)

Здесь $\lambda_1 \approx 0,0003; \lambda_2 \approx 0,00023$ - параметры затухания свободных колебаний географического полюса /2/. Согласно (14), энергия механических колебаний переходит в тепло и излучается в форме гравитационных волн в соответствии с первым уравнением (10), а сами колебания возбуждаются за счет передачи углового момента сил при взаимной гравитации небесных тел – см. рис. 4-8. Предполагая, что затухание колебаний происходит, главным образом, за счет гравитационного излучения, находим оценку численного коэффициента в уравнении (13) – $k \approx 0,035$, что в 182 раза меньше, чем предсказывает теория для случая вращения двух тел по круговой орбите (12). Таким образом, полученные в настоящей работе результаты показывают, что гравитационное взаимодействие в Солнечной системе приводит к изменению углового момента Земли, в том числе, за счет излучения гравитационных волн.

Литература

- Трунев А.П., Луценко Е.В. Семантические информационные модели глобальной сейсмической активности при смещении географического и магнитного полюса // Научный журнал КубГАУ [Электронный ресурс]. – Краснодар: КубГАУ, 2010. – №02(56). – Режим доступа: <u>http://ej.kubagro.ru/2010/02/pdf/15.pdf</u>
- Трунев А.П. Моделирование электромагнитного и гравитационного влияния небесных тел солнечной системы на смещение географического полюса и магнитное поле Земли// Научный журнал КубГАУ [Электронный ресурс]. – Краснодар: КубГАУ, 2010. – №07(61). – Режим доступа: <u>http://ej.kubagro.ru/2010/07/pdf/16.pdf</u>
- 3. Earth orientation centre / http://hpiers.obspm.fr/eop-pc/
- 4. World Data Centre for Geomagnetism (Edinburgh)/ http://www.wdc.bgs.ac.uk/catalog/master.html

- 5. International Seismological Center/ http://www.isc.ac.uk/
- Акуленко Л.Д., Кумакшев С.А., Марков Ю.Г., Рыхлова Л.В. Модель движения полюса деформируемой Земли, адекватная астрометрическим данным// Астрон. ж. - 2002. - Т. 79. - N 1. - С. 81-89.
- 7. Л.Д. Акуленко, С.А. Кумакшев, А.М. Шматков. Возмущенное вращение Земли// http://www.ipmnet.ru/~kumak/Earth/eop_theory_rus.pdf
- 8. Зотов Л. В. Вращение Земли: анализ вариаций и их прогнозирование / Дис. на соискание уч. степени к.ф.м.н., специальность 01.03.01 астрометрия и небесная механика, Москва, 2005.
- 9. Vicente, R.O., Wilson 1997, C.R., JGR, Vol. 102, B9, pp 20439-20446
- 10. Malkin, Z., & Terentev, D. Parameters of the Free Core Nutation from VLBI Data. 2007, arXiv:physics/0702152
- 11. Пономарева О.В.: О механизме возмущения периодического движения полюса земли планетами солнечной системы// http://kcs.dvo.ru/ivs/publication/volc_day/2007/art20.pdf
- 12. Dehant, V., P. Defraigne. New Transfer Functions for Nutation of a Nonrigid Earth. J. Geophys. Res., 1997, 102, 27659–27687.
- 13. Shirai, T., T. Fukushima. Did Huge Earthquake Excite Free Core Nutation? J. Geodetic Soc. Japan, 2001, 47, No 1, 198–203.
- 14. Gross R.S. The effect of ocean tides on the Earth's rotation as predicted by the results of an ocean tide model.// Geophys. Res. Lett., 1993, V.20, P.293-296.
- Chao B.F., Ray R.D., Gipson J.M., Egbert G.D., Ma C. Diurnal/semidiurnal polar motion excited by oceanic tidal angular momentum.//J. Geophys. Res., 1996, V. 101, P. 20151-20136.
- 16. Ray R.D., Steinberg D.J., Chao B.F., Cartwright D.E. Diurnal and semidiurnal variations in the Earth's rotation rate induced by oceanic tides.// Science, 1994, V.264, P. 830-832
- Brzezinski A. High frequency atmospheric excitation of Earth rotation.// IERS TN No 28, High frequency to subseasonal variations in Earth Rotation, Obseravatoir de Paris, September 2000, p.53.
- 18. Zharov V.E. Gambis D. Bizouard Ch. Diurnal and sub-diurnal variations of the Earth rotation.// IERS TN No 28, High frequency to subseasonal variations in Earth Rotation, Obseravatoir de Paris, September 2000.
- 19. Schuh H., Richter B., Nagel S. Analysis of long time series of polar motion.// ASP Conference Series, Vol. 208, 2000, P. 321
- 20. Альберт Эйнштен. О гравитационных волнах. Собрание научных трудов в четырех томах. Т.1. М., Наука, 1965.
- 21. Ландау Л.Д, Лифшиц Е.М. Теоретическая физика. Т.2. Теория поля. 7 изд. М.: Наука. 1988. 512 с.