

Chaos and Correlation

International Journal, January 16, 2012

Динамика кварков в метрике адронов и структура барионов

Dynamics of quarks in the hadrons metrics with application to the baryon structure

Alexander P. Trunev (Toronto, Canada)

Alexander P. Trunev

В работе рассмотрена система уравнений Дирака, описывающая динамику кварков в метрике адронов. Предполагается, что взаимодействие кварков осуществляется через поле Янга-Миллса и электромагнитное поле. Сформулирована замкнутая модель барионов в случае стационарной метрики. Вычислены магнитные моменты протона, нейтрона и лямбда бариона.

Ключевые слова: адроны, кварки, магнитный момент, метрика, лямбда барион, нейтрон, протон, уравнение Дирака, теория Янга-Миллса.

In this paper we consider a system of Dirac equations describing the dynamics of quarks in hadrons metric. We assume that the quarks interact via an external Yang-Mills field. Under these assumptions, we formulated a closed model of the baryons in a stationary metric. Magnetic moments of the proton, neutron and lambda baryon have been calculated.

Keywords: hadrons, quarks, magnetic moment, metric, lambda baryon, neutron, proton, Dirac equation, Yang-Mills equations.

Введение

В известных моделях решеточной квантовой хромодинамики (LQCD) используется, главным образом, плоская метрика [1-6]. В работе [7] сформулирована модель метрики адронов, удовлетворяющая основным требованиям физики элементарных частиц и космологии. В настоящей работе рассмотрена динамика кварков в метрике [7]. Полученные результаты по магнитным моментам барионов позволяют объяснить некоторые парадоксы теории кварков.

Основные уравнения модели метрики адронов

В работе [8] были получены все решения уравнений Янга-Миллса в случае центрально-симметричной метрики. Частным случаем центрально-симметричной метрики является

$$\Psi = \eta_{ij}\omega^{i}\omega^{j} = -dt^{2} + e^{2v}dr^{2} + d\theta^{2} + \sigma^{2}(\theta)d\theta^{2}$$

$$\frac{d^{2}\sigma}{d\theta^{2}} = -\kappa\sigma$$

$$\omega^{1} = dt, \omega^{2} = e^{v}dr, \omega^{3} = d\theta, \omega^{4} = \sigma d\theta$$
(1)

Здесь $\eta_{ij} = \eta^{ij}$ - метрический тензор пространства Минковского сигнатуры (-+++), $\kappa = const$ - гауссова кривизна квадратичной формы $d\theta^2 + \sigma^2(\theta)d\phi^2$, Функция V = V(r,t) определяется путем решения уравнений Янга-Миллса. Всюду, где не оговорено, используется система единиц, в которой $\hbar = c = 1$.

Среди всех решений уравнений Янга-Миллса, полученных в работе [8] в случае метрики (1), есть такое, которое выражается через эллиптическую функцию Вейерштрасса. В этом случае уравнения модели приводятся к виду:

$$A_{\tau\tau} = \frac{1}{2} (A^2 - \kappa^2), e^{\nu} = A_{\tau}, \quad \tau = t \pm r + \tau_0$$

$$A = \sqrt[3]{12} \wp (\tau / \sqrt[3]{12}; g_2, g_3),$$

$$b_{11} = -b_{22} = \frac{1}{3} A - \frac{\kappa}{6}, b_{33} = b_{44} = \frac{1}{6} A - \frac{\kappa}{3}, b_{12} = b_{21} = 0.$$
(2)

Здесь обозначено: g_2,g_3 - инварианты функции Вейерштрасса, причем $g_2=\kappa^2\sqrt[3]{12}$; τ_0 - свободный параметр, связанный с выбором начал координат; $b_{ij}+b_{ji}$ - $2(\eta^{ij}b_{ij})\eta_{ij}=T_{ij}$ - тензор энергии-импульса материи. Отметим, что в этих обозначениях уравнения Эйнштейна имеют вид

$$b_{ii} + b_{ii} + b\eta_{ij} = R_{ij} (3)$$

b = $\eta^{ij}b_{ij}$; R_{ij} - тензор Риччи.

Положим $g_2 = \sqrt[3]{12}$, $g_3 = 1$, тогда полупериоды функции Вейерштрасса определяются в виде $\omega_1 = 1.33003$, $\omega_2 = 0.66501 + 1.61260i$. Вычисление полупериодов и построение соответствующих 3D изображений функции

Вейерштрасса и модуля ее первой производной осуществлялось с использованием системы Wolfram Mathematica 9.0 [9].

В метрике (2) можно определить дефект решетки типа пузыря. В области пузыря считаем, что $A^2 = \kappa^2$, а во внешней области решение зададим в виде (2), имеем

$$A^{2} = \kappa^{2}, e^{\nu} = 0, \quad |\tau| < \tau_{0}$$

$$A = \sqrt[3]{12} \wp \left(\tau / \sqrt[3]{12}, g_{1}, g_{2}\right), e^{\nu} = A_{\tau}, |\tau| > \tau_{0}$$
(4)

На границах пузыря непрерывна функция A и ее первая производная,

$$\kappa = \sqrt[3]{12} \wp \left(\tau_0 / \sqrt[3]{12}, g_1, g_2 \right), A_\tau = 0, |\tau| = \tau_0$$
 (5)

В частном случае решетки с инвариантами заданными в виде $g_2 = \sqrt[3]{12}, g_3 = 1$, находим первый ноль и соответствующее значение параметра метрики $\tau_0 = 3.0449983, \kappa = 2.1038034$. Отметим, что метрика во внутренней области пузыря является трехмерной, поскольку не содержит радиальной координаты. Действительно, используя уравнения (1) и (4), находим

$$\Psi = -dt^2 + d\theta^2 + \cos^2(\sqrt{\kappa}\theta + \theta_0)d\phi^2$$
 (6)

Аналогично строится решение для других корней второго уравнения (5). Все эти решения отличаются только размером пузыря, тогда как значение параметра κ не меняется.

Всякий пузырь можно вывернуть наизнанку, просто изменив на противоположные неравенства (4). В этом случае можно до определить метрику во внешней области пузыря, используя решение первого уравнения (2), так, чтобы метрика внешнего пространства совпала с метрикой нашей Вселенной [7]. Наконец, третий тип частиц можно составить как комбинацию двух первых, в результате возникает пузырь, ограниченный оболочкой конечной толщины – рис. 1.

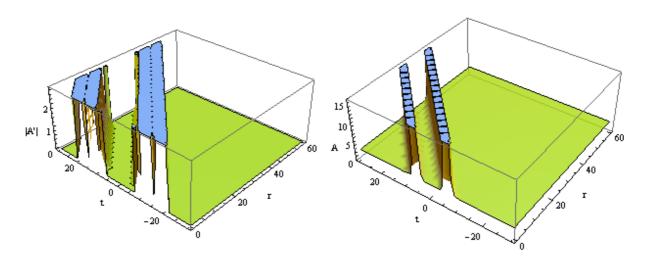


Рис. 1. Пузырь, ограниченный стенками: $g_2 = \sqrt[3]{12}$, $g_3 = 1$.

Заметим, что частица такого типа, который представлен на рис. 1, может расширяться с любой скоростью, так как эта скорость зависит только от скорости внешней границы, которую можно выбрать любой, в том числе равной скорости расширения окружающего пространства. Отсюда находим, что могут существовать частицы сферической формы, которые расширяются синхронно с пространством нашей Вселенной. Поэтому внешнему наблюдателю они представляются статическими образованиями, обладающими сферической симметрией, типа протонов.

Динамика кварков

Преобразуем метрику (6) к стандартному виду. Для этого умножим обе части выражения (6) на постоянное число – κ и введем новые переменные, отличающиеся от старых переменных на постоянный множитель $\sqrt{\kappa}$, в результате находим

$$\Psi \rightarrow \Psi_1 = dt^2 - d\theta^2 - \sin^2\theta \, d\varphi^2 \tag{7}$$

Для описания динамики кварков во внутренней области пузыря с метрикой вида (7) рассмотрим систему уравнений Дирака во внешнем поле Янга-Миллса [10-11]. Относительно поля Янга-Миллса будем предполагать, что это поле во внутренней области пузыря сводится к некоторой

совокупности констант. В настоящей модели использованы только две константы, а само поле описывается одним векторным потенциалом

$$A_{YM}^{\mu} = (\Phi_0, 0, 0, A_0)$$

Отметим, что согласно (2) в метрике (7) тензор энергии импульса является постоянным. Кроме того, будем учитывать электромагнитное поле, которое генерируют кварки. Используя результаты работы [12], преобразуем уравнение Дирака к криволинейным координатам (7). Имеем систему уравнений

$$i\gamma^{\mu} \left(\nabla_{\mu} + iq_{ab}A_{\mu}^{b}\right)\psi_{a} = m_{ab}\psi_{a} \tag{8}$$

Здесь обозначено γ^{μ} , q_{ab} , A^{b}_{μ} , ψ_{a} , m_{ab} - матрицы Дирака, параметры взаимодействия, векторный потенциал, волновая функция и масса поля кварка a входящего в состав частицы b соответственно. Матрицы Дирака в метрике (7) имеют вид

$$\gamma^{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \quad \gamma^{\varphi} = \begin{pmatrix} 0 & 0 & 0 & -ie^{-i\varphi} \\ 0 & 0 & ie^{i\varphi} & 0 \\ 0 & ie^{-i\varphi} & 0 & 0 \\ -ie^{i\varphi} & 0 & 0 & 0 \end{pmatrix}$$

$$\gamma^{\theta} = \begin{pmatrix} 0 & 0 & -\sin\theta & e^{-i\phi}\cos\theta \\ 0 & 0 & e^{i\phi}\cos\theta & \sin\theta \\ \sin\theta & -e^{-i\phi}\cos\theta & 0 & 0 \\ -e^{i\phi}\cos\theta & -\sin\theta & 0 & 0 \end{pmatrix}$$

В этих обозначениях оператор Дирака в метрике (7) можно представить в форме

$$\gamma^{\mu} \nabla_{\mu} = \gamma^{0} \partial_{t} + \gamma^{\theta} \partial_{\theta} + \frac{\gamma^{\phi}}{\sin \theta} \partial_{\phi}$$

Поскольку кварки обладают электрическим зарядом, они генерируют электромагнитное поле, посредством которого взаимодействуют друг с другом. Для описания этого взаимодействия используем уравнения квантовой электродинамики в форме

$$\alpha q_{ab} \overline{\psi}_{a} \gamma^{\mu} \psi_{a} = (\partial_{t}^{2} - \nabla^{2}) A_{e}^{\mu} \tag{9}$$

Здесь $\alpha = e^2/\hbar c$ - постоянная тонкой структуры, $\overline{\psi}_a = \psi_a^+ \gamma^0, \psi_a^+$ - сопряженный (по Эрмиту) вектор. Таким образом, предполагаем, что токи и заряды кварков суммируются, создавая коллективное поле, с которым кварки взаимодействуют в соответствии с уравнениями (8).

Система уравнений (8)-(9) использовалась для моделирования динамики кварков в случае барионов, имеющих состав (uud), (udd), (sdu) — протон, нейтрон и Λ барион соответственно. В простейшем случае, в котором учитывается только одно электромагнитное поле, модель содержит 3x4+3=15 нелинейных уравнений в частных производных. Для понижения порядка системы представим решение уравнений (8)-(9) в форме

$$\psi_{a} = e^{-i\omega t + iL\phi} \begin{pmatrix} f_{1}(\theta) \\ f_{2}(\theta)e^{i\phi} \\ if_{3}(\theta) \\ if_{4}(\theta)e^{i\phi} \end{pmatrix}_{a}, \quad A_{e}^{\mu} = (\Phi_{e}(\theta), 0, 0, A_{e}(\theta))$$

$$(10)$$

Здесь L, ω - проекция углового момента на выделенную ось и энергия системы соответственно. Система уравнений Дирака для случая представления решения в форме (10), приводится к виду,

$$f'_{1} = (L + q_{ab}A_{b}\sin\theta)(f_{1}\cot\theta + f_{2}) + f_{2} + (m_{ab} + \omega - q_{ab}\Phi_{b})(f_{3}\sin\theta - f_{4}\cos\theta)$$

$$f'_{2} = (L + q_{ab}A_{b}\sin\theta)(f_{1} - f_{2}\cot\theta) - f_{2}\cot\theta - (m_{ab} + \omega - q_{ab}\Phi_{b})(f_{3}\cos\theta + f_{4}\sin\theta)$$

$$f'_{3} = (m_{ab} - \omega + q_{ab}\Phi_{b})(f_{1}\sin\theta - f_{2}\cos\theta) + (L + q_{ab}A_{b}\sin\theta)(f_{3}\cot\theta + f_{4}) + f_{4}$$

$$f'_{4} = -(m_{ab} - \omega + q_{ab}\Phi_{b})(f_{1}\cos\theta + f_{2}\sin\theta) + (L + q_{ab}A_{b}\sin\theta)(f_{3} - f_{4}\cot\theta) - f_{4}\cot\theta$$
(11)

Здесь предполагается, что $A_b = A_e + A_{YM}$, $\Phi_b = \Phi_e + \Phi_{YM}$. Таким образом, дробный электрический заряд кварка (но не его величина, выражаемая в зарядах электрона!), является мерой взаимодействия кварков

со статическим полем Янга-Миллса. Эта гипотеза не является существенной, так как введение отдельного заряда для описания взаимодействия кварков с полем Янга-Миллса сводится лишь к перенормировке самих полей.

Отметим, что масса и заряд являются индивидуальными для каждого кварка, а момент и энергия всей системы выбираются из условия образования стоячих волн вдоль меридиональной координаты. Само наличие такого типа решений не является очевидным, так как, например, аналогичная задача трех тел в классической механике с парным взаимодействием между частицами имеет весьма сложные решения (т.н. детерминированный хаос). Вычисляя ток в левой части уравнения (9) и оператор набла в правой части, находим

$$\alpha q_{ab} \overline{\psi}_{a} \gamma^{0} \psi_{a} = \alpha q_{ab} \left(\sum_{i=1}^{4} f_{i}^{2} \right)_{a} = -\Phi_{e}^{"} - \Phi_{e}^{'} \cot \theta , \qquad (12)$$

$$\alpha q_{ab} \overline{\psi}_{a} \gamma^{\varphi} \psi_{a} = 2\alpha q_{ab} \left(f_{1} f_{4} - f_{2} f_{3} \right)_{a} = -A_{e}^{"} - A_{e}^{'} \cot \theta + \frac{A_{e}}{\sin^{2} \theta} , \qquad (12)$$

$$\overline{\psi}_{a} \gamma^{\varphi} \psi_{a} = 0 .$$

Здесь по индексу *а* осуществляется суммирование по всех кваркам, входящим в систему. Отметим, что вещественная плотность заряда и азимутальная составляющая тока порождают электрическое и магнитное поле, тогда как меридиональная составляющая тока обращается в ноль на решениях (10). Таким образом, в случае указанных барионов задача сводится к решению системы из 14 обыкновенных дифференциальных уравнений. Граничные условия для системы (11)-(12) сформулируем в следующем виде:

$$f_1(0) = f_{1a}, f_2(0) = f_3(0) = f_4(0) = 0 \mid a = u, d, s;$$

$$\Phi'_{e}(0) = 0, \Phi_{e}(0) = 0, A'_{b}(0) = 0, A_{e}(0) = 0.$$
(13)

Отметим, что граничные условия (13) позволяют выделить регулярное решение и устранить логарифмическую особенность на полюсах.

Как известно, электромагнитные свойства элементарных частиц характеризуются электрическим зарядом и магнитным моментом. Поэтому параметры поля Янга-Миллса, фигурирующие в уравнениях (11), должны быть связаны с величиной заряда и магнитного момента системы кварков, которые для данной системы определяются следующим образом

$$Q_{b} = \int dV q_{ab} \overline{\psi}_{a} \gamma^{0} \psi_{a} = 4\pi \int_{0}^{\pi/2} d\theta \sin\theta q_{ab} \left(\sum_{i=1}^{4} f_{i}^{2} \right)_{a}$$

$$\mu_{b} = \frac{1}{2} \int dV [\mathbf{r} \times \mathbf{j}]_{z} = 2\pi \mu_{q} \int_{0}^{\pi/2} d\theta \sin^{2}\theta q_{ab} \overline{\psi}_{a} \gamma^{\varphi} \psi_{a} = 4\pi \mu_{q} \int_{0}^{\pi/2} d\theta \sin^{2}\theta \sum_{a} q_{ab} (f_{1}f_{4} - f_{2}f_{3})_{a}$$

$$(14)$$

В качестве единицы измерения массы возьмем 1 МэВ, тогда параметры поля Янга-Миллса, векторный потенциал и энергия системы будут выражаться в единицах МэВ. Единицей магнитного момента в этом случае является $\mu = e\hbar/MeV = 2m_e\mu_B \approx 1.0219978\,\mu_B$, где μ_B - магнетон Бора. Сомножителем здесь выступает удвоенная масса электрона, выраженная в принятых единицах массы. Следовательно, единицей магнитного момента в такой системе является магнетон Бора, а не ядерный магнетон, как предполагалось в первых работах по теории магнитных моментов барионов, состоящих из кварков [10, 13-14].

Отметим, что предсказание аномальных магнитных моментов барионов было большим успехом теории SU(6), что служило косвенным подтверждением гипотезы существования кварков, как составных частей адронов [10]. Для вычисления магнитных моментов использовалась нерелятивистская теория и гипотеза о большой массе свободных кварков. $m_q \approx 4 GeV$. В дальнейшем, однако, оказалось, что масса кварков, входящих в состав нуклонов, порядка нескольких МэВ, что поставило в тупик всю первоначальную теорию. В настоящее время, расчеты магнитных моментов

барионов осуществляются на основе весьма сложных численных моделей LQCD [4-6].

Определим распределенные величины плотности тока и магнитного момента

$$j(\theta) = \sum_{a} 2\alpha \, q_{ab} (f_1 f_4 - f_2 f_3)_a \tag{15}$$

$$\mu(\theta) = 4\pi \mu_q \int_0^{\theta} d\theta \sin^2 \theta \sum_a q_{ab} (f_1 f_4 - f_2 f_3)_a$$

Волновые функции кварков можно нормировать стандартным способом, который заключается в нормировке волновой функции каждого кварка на единицу:

$$1 = \int dV \overline{\psi}_{a} \gamma^{0} \psi_{a} = 4\pi \int_{0}^{\pi/2} d\theta \sin \theta \left(\sum_{i=1}^{4} f_{i}^{2} \right)_{a=u,d,s}$$
 (16)

При таком способе нормировки кварки считаются реальными частицами, которые присутствуют в составе другой частицы в заданной пропорции. Поскольку свободные кварки не наблюдаются, то вопрос о справедливости нормировки (16) остается открытым.

Можно предположить, что полная модель барионов должна содержать, наряду со спином, электрическим зарядом и магнитным моментом, массу и время жизни частиц, а также описание возбужденных состояний, которые в данной модели соответствуют спектру энергии системы кварков. Рассмотрим эти вопросы более подробно.

Магнитные моменты барионов

В модели (7)-(14) вычисление магнитных моментов сводится, как уже показано выше, к определению двух параметров, характеризующих поле Янга-Миллса во внутренней области пузыря, при заданной общей энергии системы. Решение этой задачи осуществлялось на основе численной модели, реализованной в системе Wolfram Mathematica 9.0 [9]. Было установлено, что масштаб изменения параметров поля Янга-Миллса не превышает 1 МэВ.

Следовательно, один из параметров модели, например, Φ_{YM} , можно исключить из рассмотрения, так как этот параметр входит в линейной комбинации с массами кварков, которые определены приблизительно с такой точностью. С другой стороны, энергию отдельного кварка можно задать равной, например, массе нейтрального пи-мезона, т.е. положить

$$\omega = m_{\pi} \approx 134.9766 MeV. \tag{17}$$

В таком случае существует однозначная связь между величиной потенциала поля Янга-Миллса во внутренней области пузыря и магнитным моментом частицы.

Общие свойства исследуемых барионов и кварков представлены в таблицах 1-2.

Symbol Symbol	Spin	Charge	Mass	BaryonNumber	GFactor	Hypercharge	Isospin	QuarkContent
р	1 2	1	938.27203	1	5.585694713	1	1 2	{{DownQuark, UpQuark, UpQuark}}
p	1 2	-1	938.27203	-1	5.585694713	-1	1 2	{{DownQuarkBar, UpQuarkBar, UpQuarkBar}}
n	1 2	0	939.56536	1	-3.82608545	1	1 - 2	{{DownQuark, DownQuark, UpQuark}}
ñ	1 2	0	939.56536	-1	-3.82608545	-1	1 - 2	{{DownQuarkBar, DownQuarkBar, UpQuarkBar}}
Λ	1 2	0	1115.683	1	-1.226	0	0	{{StrangeQuark, DownQuark, UpQuark}}
T	1	0	1115.683	-1	-1.226	0	0	{{StrangeQuarkBar, DownQuarkBar, UpQuarkBar}}

Таблица 1. Свойства барионов

На рис. 2 представлены результаты моделирования структуры протона – тока, распределенных параметров магнитного момента и волновых функций $f_{ia}(\theta)$. Для параметров кварков, указанных в таблице 2, получены следующие значения

$$\omega = 134.9766 MeV, A_{YM} = -0.617 MeV, \Phi_{YM} = 0,$$

$$L_d = -\frac{1}{2}, f_{1d}(0) = 22.9395, L_u = \frac{1}{2}, f_{1u}(0) = 0.3077$$
(18)

Таким образом, в случае протона потенциал поля Янга-Миллса в пузыре действительно является относительно малым. Общая энергия системы кварков в этом состоянии составляет $3\omega = 3m_\pi \approx 404.93 MeV$, суммарный момент системы равен спину протона, а магнитный момент равен

магнитному моменту протона с экспериментальной точностью. При условиях (18) также выполняются условия нормировки (16), поэтому суммарный заряд системы кварков равен заряду протона.

Таблица 2. Свойства кварков

Symbol	Spin	Charge	Mass	BaryonNumber	Bottomness	Charm	Hypercharge	Isospin	Strangeness	Topness
u	1 2	2 3	2.2	1 3	0	0	1/3	1 2	0	0
ū	1 2	- ² / ₃	2.2	$-\frac{1}{3}$	0	0	$-\frac{1}{3}$	1 2	0	0
d	1 2	$-\frac{1}{3}$	5.0	1/3	0	0	1/3	1 2	0	0
d	1 2	1 3	5.0	$-\frac{1}{3}$	0	0	$-\frac{1}{3}$	1 2	0	0
S	1 2	$-\frac{1}{3}$	95.	1 3	0	0	- ² / ₃	0	-1	0
<u>s</u>	1 2	1 3	95.	$-\frac{1}{3}$	0	0	2 3	0	1	0
С	1 2	2 3	1250.	1/3	0	1	4 3	0	0	0
c	1 2	- ² / ₃	1250.	$-\frac{1}{3}$	0	-1	- 4 3	0	0	0
ь	1 2	$-\frac{1}{3}$	4200.	1/3	-1	0	1/3	0	0	0
Б	1 2	1 3	4200.	$-\frac{1}{3}$	1	0	$-\frac{1}{3}$	0	0	0
t	1 2	2 3	174 200.	1 3	0	0	1/3	0	0	1
ŧ	1 2	$-\frac{2}{3}$	174 200.	$-\frac{1}{3}$	0	0	$-\frac{1}{3}$	0	0	-1

Отметим, что в настоящей модели магнитный момент вычисляется по стандартным формулам электродинамики (14), а не как квантовая величина. Поэтому магнитный момент протона определяется не магнетоном кварков, как предполагалось в моделях [10, 13-14], а током, который в сумме дает наблюдаемую величину аномального магнитного момента.

На рис. 3. представлены результаты моделирования структуры нейтрона, которые можно сравнить с аналогичными данными для протона - рис. 2. Отметим, что данные для распределенного магнитного момента нейтрона и протона нормированы на их экспериментальные значения, указанные в таблице 1. Для нейтрона получены следующие значения параметров модели

$$\omega = 134.9766 MeV, A_{YM} = -.0666 MeV, \Phi_{YM} = 0,$$

$$L_d = \frac{1}{2}, f_{1d}(0) = 0.3092, L_u = -\frac{1}{2}, f_{1u}(0) = 22.6882.$$
(19)

Отметим, что потенциал поля Янга-Миллса в случае нейтрона является отрицательным, а по величине на порядок меньше, чем аналогичный потенциал в случае протона. Общая энергия системы кварков в нейтроне при указанных значениях параметров составляет $3\omega = 3m_\pi \approx 404.93 MeV$. При выполнении условий (17) магнитные момент системы кварков равен магнитному моменту нейтрона с экспериментальной точностью. Выполняются также условия нормировки (16), поэтому заряд системы равен нулю, а спин системы равен $\frac{1}{2}$.

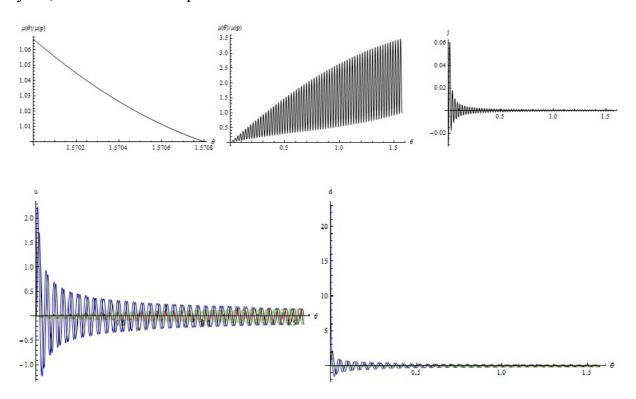


Рис. 2. Магнитный момент системы кварков (uud) нормированный на магнитный момент протона, электромагнитный ток в системе и волновые функции кварков.

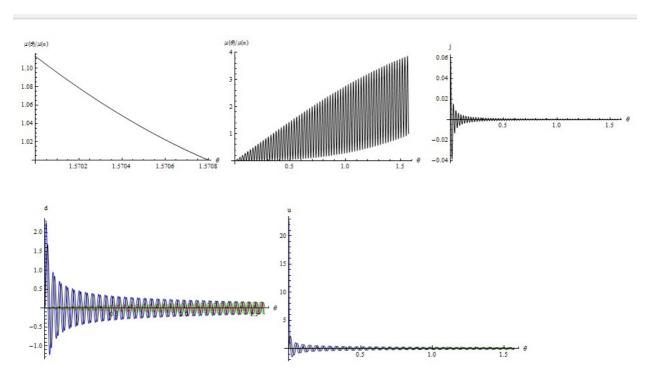


Рис. 3. Магнитный момент системы кварков (udd) нормированный на магнитный момент нейтрона, электромагнитный ток в системе и волновые функции кварков.

На рис. 4 представлены данные по моделированию структуры Λ бариона. В этом случае получены следующие значения параметров модели

$$\omega = 134.9766 MeV, A_{YM} = -0.0425 MeV, \Phi_{YM} = 0,$$

$$L_d = -\frac{1}{2}, f_{1d}(0) = 22.938, L_s = L_u = \frac{1}{2},$$

$$f_{1s}(0) = 0.28151, f_{1u}(0) = 0.30632$$
(20)

Для значений параметров (20) магнитный момент системы кварков (sdu) равен магнитному моменту лямбда бариона с экспериментальной точностью. Потенциал поля Янга-Миллса для системы кварков (sdu) является отрицательным, а по величине меньше, чем в случае нейтрона и на порядок меньше, чем в случае протона. Для этой системы выполняются условия нормировки (16), заряд системы равен нулю, а спин равен ½.

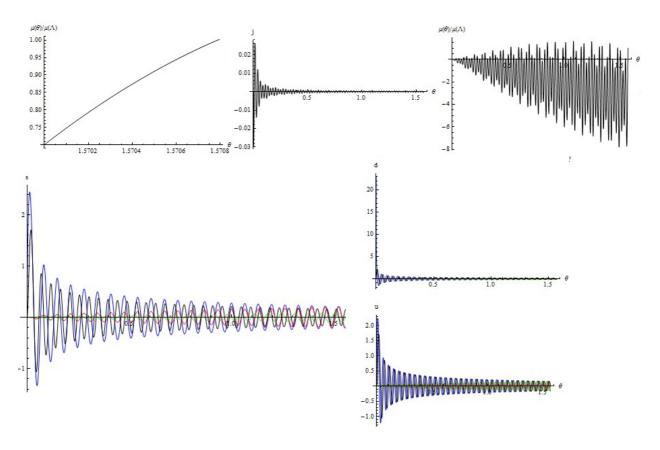


Рис. 4. Магнитный момент системы кварков (sdu) нормированный на магнитный момент лямбда бариона, электромагнитный ток в системе и волновые функции кварков.

Таким образом, мы показали, что систему кварков в метрике адронов можно описать на основе системы уравнений Дирака и уравнений квантовой электродинамики. Сформулирована замкнутая модель (8)-(14), на основе которой вычислены магнитные моменты адронов (uud), (udd) и (sdu) при их заданной энергии и заданном электрическом заряде. Исследованная область энергии соответствует резонансу в системе кварков, при котором, видимо, могут генерироваться пионы. Величина общей энергии системы кварков $3\omega = 3m_\pi \approx 404.93 MeV$ составляет значительную долю массы покоя исследованных частиц.

Наконец, заметим, что сформулированная выше модель динамики кварков в метрике адронов (7) имеет интересное свойство: кварки не покидают внутреннюю область пузыря, пока не нарушена сферическая http://chaosandcorrelation.org/Chaos/CR_1_01_2013.pdf

симметрия. Действительно, движение кварков полностью осуществляется в трехмерном пространстве метрики (7). Чтобы кварки могли выйти за пределы пузыря, им надо передать радиальный импульс, что невозможно в метрике (7). Изменение же метрики возможно только при значительном возмущении поля Янга-Миллса.

References

- 1. S. Durr, Z. Fodor, J. Frison *et all*. Ab Initio Determination of Light Hadron Masses// Science, 21 November 2008: Vol. 322, no. 5905 pp. 1224-1227.
- R. G. Edwards (LHPC Collaboration), B. Joó (UKQCD Collaboration). The Chroma Software System for Lattice QCD// arXiv:hep-lat/0409003, Proceedings of the 22nd International Symposium for Lattice Field Theory (Lattice2004), Nucl. Phys B1 40 (Proc. Suppl) p832, 2005.
- 3. Saumen Datta, Rajiv V. Gavai, Sourendu GuptaThe QCD Critical Point: marching towards continuum//arXiv:1210.6784v1 [hep-lat] 25 Oct 2012
- 4. Thomas Primer, Waseem Kamleh, Derek Leinweber, Matthias Burkardt. Magnetic properties of the neutron in a uniform background field//arXiv:1212.1963v1 [hep-lat] 10 Dec, 2012.
- 5. S. Boinepalli, D. B. Leinweber, A. G. Williams, J. M. Zanotti, J. B. Zhang. Precision Electromagnetic Structure of Octet Baryons in the Chiral Regime//Phys. Rev. D74, 093005 (2006). [hep-lat/0604022].
- 6. F. X. Lee, S. Moerschbacher, W. Wilcox, Magnetic moments of vector, axial, and tensor mesons in lattice QCD, Phys. Rev. D78, 094502 (2008). [arXiv:0807.4150 [hep-lat]].
- Трунев А.П. Моделирование метрики адронов на основе уравнений Янга-Миллса //
 Политематический сетевой электронный научный журнал Кубанского
 государственного аграрного университета (Научный журнал КубГАУ)
 [Электронный ресурс]. Краснодар: КубГАУ, 2012. №10(84). С. 874 887. –
 Режим доступа: http://ej.kubagro.ru/2012/10/pdf/68.pdf, 0,875 у.п.л.
- 8. Л.Н. Кривоносов, В.А. Лукьянов. Полное решение уравнений Янга-Миллса для центрально-симметричной метрики// Journal of Siberian Federal University, Mathematics & Physics 2011, 4(3), 350-362.
- 9. Wolfram Mathematica 9.0/ http://www.wolfram.com/mathematica/
- 10. J.J.J. Kokkedee. The Quark Model. W.A. Benjamin Inc., NY-Amsterdam, 1969.

11. Bryce S. DeWitt. Dynamical Theory of Groups and Fields. – Gordon and Breach, NY, 1966.

- 12. V. Dzhunushaliev. Canonical conjugated Dirac equation in a curved space// arXiv:1202.5100, Feb. 25, 2012.
- 13. Б.В. Струминский. Магнитные моменты барионов в модели кварков. Препринт ОИЯИ, Р-1939, 1965.
- 14. G. Morpurgo. Is a non relativistic approximation possible for the internal dynamics of elementary particles? //Physics,2,95,1965.