

Моделирование массы адронов на основе скалярной модели глюболов

Chaos and Correlation International Journal, August 2, 2012

Simulation of hadron masses on the basis of the scalar model of glueballs

Alexander P. Trunev (Toronto, Canada)

Alexander P. Trunev

В работе рассмотрена скалярная модель глюонного конденсата, в котором образуются глюболы. Показано, что масса известных адронов описывается с приемлемой точностью интегралом от плотности конденсата по объему глюбола.

Ключевые слова: адрон, глюонный конденсат, глюбол, масса, скалярное поле.

In this paper we consider a scalar model of the gluon condensate, in which bubbles are formed - glueballs. It is shown that the mass of the known hadrons is described with acceptable accuracy by the integral of the condensate density in terms of the glueball.

Keywords: gluon condensate, glueball, hadron, mass, scalar fields.

Согласно современным представлениям адроны состоят из кварков, взаимодействующих между собой посредством векторных калибровочных бозонов – глюонов. Квантовая хромодинамика (КХД), описывающая такого рода взаимодействие, является необычайно сложной теорией, поэтому в моделях элементарных частиц, построенных на основе КХД, широко используются различные упрощения и численные методы. Глюбол является одной из гипотетических частиц, предсказанных на основе КХД [1]. Предполагается, что глюбол состоит только из глюонного конденсата. Согласно вычислениям, сделанным в рамках решеточной КХД [2], скалярная частица такого типа обладает массой около 1730 МэВ.

В настоящей работе использована скалярная модель глюонного конденсата, развитая в работах [3-4] и других. Эта модель в обозначениях работы [4] имеет вид

$$\partial_{\mu}\partial^{\mu}\phi = -\phi \left[\chi^{2} + \lambda_{1} \left(\phi^{2} - \phi_{\infty}^{2}\right)\right]$$

$$\partial_{\mu}\partial^{\mu}\chi = -\chi \left[\phi^{2} + \lambda_{2} \left(\chi^{2} - \chi_{\infty}^{2}\right)\right]$$
(1)

Здесь скалярные поля ϕ , χ описывают распределение конденсата; λ_1 , λ_2 - параметры модели; ϕ_{∞} , χ_{∞} - собственные значения задачи. В случае сферической симметрии система уравнений (1) приводится к виду

$$x\phi'' + 2\phi' = ax\phi \left[\chi^{2} + \lambda_{1} (\phi^{2} - \phi_{\infty}^{2})\right]$$

$$x\chi'' + 2\chi' = ax\chi \left[\phi^{2} + \lambda_{2} (\chi^{2} - \chi_{\infty}^{2})\right]$$
(2)

Здесь введена безразмерная переменная $x = ra^{-1/2}$. Граничные условия для системы уравнений (2) имеют вид:

$$\phi(0) = 1, \quad \phi'(0) = 0, \\
\chi(0) = \chi_0, \quad \chi'(0) = 0.$$
(3)

Система уравнений (2) с граничными условиями (3) решалась с использованием Wolfram Mathematica 8 [5] при значениях параметров из работы [4]: $a = 1; \lambda_1 = 0.1; \lambda_2 = 1; \phi_{\infty} = 1.6171579; \chi_{\infty} = 1.49273856$. Результаты расчетов функций ϕ, χ приведены на рис. 1.

Рис. 1. Параметры глюбола, вычисленные по данным [4]: $a = 1; \lambda_1 = 0.1; \lambda_2 = 1; \phi_{\infty} = 1.6171579; \chi_{\infty} = 1.49273856$.

Как видно из данных, приведенных на рис. 1, глюбол представляет собой сферическое образование с плотностью, зависящей от координаты. В теории [3-4] плотность конденсата описывается эффективным Лагранжианом

$$G = -L_{eff} = \left\langle H_i^A H^{Ai} \right\rangle - \left\langle E_i^A E^{Ai} \right\rangle$$
(4)

http://chaosandcorrelation.org/Chaos/CR_1_8_2012.pdf

Здесь E_i^A , H_i^A - хромоэлектрическое и хромомагнитное поле соответственно. Выражение плотности конденсата в зависимости от распределения скалярных полей имеет вид [4]

$$G = -\frac{1}{2} \left(\phi'^{2} + \chi'^{2} \right) + \frac{\lambda_{1}}{4} \left(\phi^{2} - \phi_{\infty}^{2} \right)^{2} + \frac{\lambda_{2}}{4} \left(\chi^{2} - \chi_{\infty}^{2} \right)^{2} - \frac{\lambda_{2}}{4} \chi_{\infty}^{4} - \frac{1}{2} \phi^{2} \chi^{2}$$
(5)

В частном случае подгруппы SU(2) выражение (5) сводится к виду

$$G_{SU(2)} = -\frac{1}{2}\phi'^2 + \frac{\lambda_1}{4}(\phi^2 - \phi_{\infty}^2)^2$$
(6)

Выражения (5)-(6) вместе с решениями задачи (2)-(3) были использованы для моделирования массы адронов – рис. 2-3. Предположим, что адроны состоят из центрального ядра – глюбола, окруженного шубой из кварк-глюонных полей. Для каждого адрона глюбол имеет определенный радиус, а масса глюбола определяется интегралом от некоторой линейной комбинации функций (5) и (6). Кроме того, в массу глюбола вносит вклад поверхностное натяжение, обусловленное конечным размером глюбола. Таким образом, масса глюбола определяется согласно

$$m = 4\pi a^{3/2} \int_{0}^{x_{0}} (G + bG_{SU(2)} + k\rho / x) x^{2} dx$$
(7)

Мы рассмотрели две модели плотности: $\rho = \phi^2 + \chi^2$ - рис. 2, и $\rho = 1$ - рис. 3. Обе модели имеют одинаковую точность в сравнении с массой адронов, что, видимо, объясняется поведением функций ϕ , χ , сохраняющих постоянное значение в широком интервале изменения радиальной координаты. Кроме того, отдельно был изучен функционал массы в случае SU(2) конденсата:

$$m = 4\pi a^{3/2} \int_{0}^{x_{0}} (G_{SU(2)} + k\rho / x) x^{2} dx$$
(8)

Модель (7)-(8) была проверена для всей совокупности адронов – рис. 2-3. Предположим, что масса отдельного адрона пропорциональна массе его глюбола, следовательно, имеем

$$m_H = Hm \tag{9}$$

Изменяя параметры модели, можно добиться согласования зависимостей (7)-(8) с табличными данными массы адронов. Для решения этой задачи мы использовали встроенную в Wolfram Mathematica 8 [5] таблицу элементарных частиц с параметрами

ParticleData["Hadron", "Mass"]. Из таблицы извлекается лист данных, в который добавляется некоторое число нулевых частиц – 175 для модели (7) и 100 для модели (8). Эти данные позволяют совместить начало координат, в которых масса адрона и масса глюбола связаны линейной зависимостью (9). Данные для адронов нормируются на максимальный элемент - mY = 11019 МэВ. Далее осуществляется подгонка параметров моделей - a, b, h, k для модели (7) и a, h, k для модели (8). При этом параметры глюбола сохраняются во всех расчетах, а именно:

$$\lambda_1 = 0.1; \lambda_2 = 1; \phi_{\infty} = 1.6171579; \chi_{\infty} = 1.49273856$$

В результате были получены следующие значения параметров модели (7):

$$m_{H} / m_{Y} = hm / 4\pi ,$$

$$\rho = \phi^{2} + \chi^{2} : a = 0.0003815; b = 1.792; h = 0.3665, k = 0.0237; (10)$$

$$\rho = 1: \qquad a = 0.0003815; b = 1.792; h = 0.3665; k = 0.061$$

Рис. 2. Сравнение массы адронов с массой глюбола, вычисленной по уравнениям (7)-(8) при $\rho = \phi^2 + \chi^2$. Параметры модели (7): a = 0.0003815; b = 1.792; k = 0.0237; h=0.3665. Параметры модели (8): a=0.000536; k = 0.0164; h = 0.414; mY = 11019 МэВ.

http://chaosandcorrelation.org/Chaos/CR_1_8_2012.pdf

Рис. 3. Сравнение массы адронов с массой глюбола, вычисленной по уравнениям (7)-(8) при *ρ* = 1. Параметры модели (7): a=0.0003815; b = 1.792; k = 0.061; h =0.3665. Параметры модели (8): a= 0.000536; k=0.042; h = 0.414; mY = 11019 МэВ.

Сопоставление массы адронов с массой глюбола, вычисленной по модели (7) с данными (10) дано на рис. 2-3. Удовлетворительное согласие расчетных и экспериментальных данных начинается с массы ρ - мезона, составляющей 775.5 МэВ и заканчивается на массе Ψ - мезона, составляющей 4421 МэВ. Для адронов меньшей и большей массы линейная модель (9) не выполняется.

Для модели (8) были получены следующие значения параметров

$$m_{H} / m_{Y} = hm / 4\pi ,$$

$$\rho = \phi^{2} + \chi^{2} : a = 0.000536; h = 0.414, k = 0.0164;$$

$$\rho = 1: \qquad a = 0.000536; h = 0.414; k = 0.042$$
(11)

Отметим, что различие в точности описания экспериментальных данных между моделями (7) и (8) является номинальным, но модель (8) содержит на один параметр меньше. С другой стороны, различие в моделях плотности, использованных для моделирования поверхностной энергии, также является номинальным и сводится только к переопределению параметра k при сохранении значений других параметров модели, как следует из выражений (10)-(11).

Таким образом, мы показали, что линейная модель (9), связывающая массу адронов с массой центрального ядра – глюбола, выполняется для значительной части адронов, масса которых лежит в интервале от 775.5 МэВ до 4421 МэВ – около 922 частиц из общего числа 973. Это свидетельствует в пользу принятой модели строения элементарных частиц, в которой, предполагается, что адроны содержат центральное ядро глюбол и окружающие его поля кварков и глюонов.

References

- В. В. Анисович Экзотические мезоны: поиск глюболов // УФН. 1995. Т. 165. С. 1225—1247.
- Colin J. Morningstar, Mike Peardon Glueball spectrum from an anisotropic lattice study//Physical Review D 60 (3): 034509, (1999). arXiv:hep-lat/9901004.
- V. Dzhunushaliev. Scalar model of the glueball// Hadronic J. Suppl. 19, 185 (2004); http://arxiv.org/pdf/hep-ph/0312289v4.pdf

- 4. V. Dzhunushaliev. SU(3) glueball gluon condensate//arXiv:1110.1427 [hep-ph].
- 5. Wolfram Mathematica 8// http://www.wolfram.com/mathematica/