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B pabote paccMmorpena mojenb xaotuueckoro nosenenusi The model of chaotic behavior of nucleons in nuclei,
HYKJIOHOB B aTOMHBIX sapaX, MOCTpoeHHas Ha ocHoBe based on the model of nuclear interactions and the
MOJICTIH SIICPHBIX B3aumogpeicTBuil u craructuku @epmu- Fermi-Dirac statistics is discussed. It is shown that in
Hupaka. IlokazaHo, uto B Takoi Mozmenu HabOmomatorcst this model there are phase transitions, and in the
(ha3oBbIe Tepexo/ibl, MPU KOTOPBIX dHeprus u xumudeckuit chemical potential and energy plane there are specific

MOTEHIIHA 00Pa3yroT Ha TIOCKOCTH 3aMKHYTBIE (DHTYPBI. geometric figures.
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000J109Ka, Xa0C, XUMUYCCKUN TIOTCHIIHAI, SHEPTHS CBS3U. Potential, Neutron, Nuclei, Nuclei Shell, Proton.

It is known that the binding energy of nucleons in nuclei depends on the availability of a regular
motion of protons and neutrons in the nuclear shells, and on the chaotic behavior of the nucleon,
which introduces uncertainty in the measurement of the mass of the nuclides [1-3]. Models of
chaotic behavior of the nucleon are based on an analogy with the chaos in classical dynamical
systems, as well as on the concept of quantum chaos [4-5]. In [6] developed a model of the
bifurcation of the binding energy in atomic nuclei, based on the theory of nuclear interactions [7]
and on the generalized dynamics of the Verhulst-Ricker-Planck equation [8]. To derive the
equations of the model using the relationship between the size of the nucleus, binding energy and
the number of neutrons and protons, this relation can be represented as follows (see [6-7])

rE =B(A 2Z) (1)

A=Z+N,N,Z

Here are the number of nucleons, neutrons and protons, respectively.

Using the experimental data [9] and the standard expression of the nuclear radius, reflecting the

_ 1/3
r(A) =LA , we can define the left-hand side of

weak compressibility of nuclear matter, i.e.
equation (1). As a result, we find the radius of the core product of the energy due to the number

of nucleons. For consistency with the data [9], we set
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B/r,=a, +a,A+a,A"’ +a,2” +a,(N-Z)>*A>"? )

a, =-14438.078;a, =-15418.779; a, =15181.734;
a, =-687.601; a, =- 22502.817

Here are the values of the coefficients derived from the data [9] for the binding energy calculated
relative to the carbon isotope *2C. All the coefficients are given in keV. Note that expression (2)

has a high degree of accuracy for all nuclides with the number of nucleons A=20. Fig. 1.
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Figure 1: The dependence of the product of nuclei size and binding energy due to the number of
nucleons (top) and for number of isotopes (bottom) calculated according to equation (2) and

according to [9] is shown.
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Construct on the basis of equation (1) a discrete model of the energy levels in nuclei as follows:

BA+1B§ — A 47ty BaaBa

E,.E:= =
AETA S ot 4Am?/33r,, A @)

On the other hand, the density of nucleons in the nucleus can be related to energy using the
Fermi-Dirac statistics, we have

_ A 9, Z/A gy N/A
A = 4721’: /3 - e(Ez*#z)/g +1 e(ENf,uN)IB +1

(4)

Here 9i» Eips,0 are the weight factors, energy and chemical potential of protons and
neutrons, and the statistical temperature of the nucleon, respectively. Consider the results
obtained in the simplified model under the condition of equality of chemical potentials and

binding energies of the two kinds of nucleons:

Hy = Hy = ) =—6b, EZ:EN:_EA/A_

In this case, the model can be written as follows

K
(Xa +D)(X, +b)* = o 11
x,=— A _p K=2aBaBas g, g0
A6 30 A (5)
9a=09n T 97

Model (5) differs from similar models developed in [6-7] in that it has no singularity at the point

Xa=0 . For a fixed number of nucleons the first equation (5) can be regarded as a model of
equilibrium in the system of nucleons at nonzero temperature [6]. In this case we have

X, = K —b
" (x +b)2 (e +1)

(6)
The main properties of the model (6) coincide with the properties of the model discussed in [6-7].

In particular, the bifurcation diagram of model (6) has a characteristic form of "four rats", and

reproduces the transition to chaotic behavior in the parameter values © > IN137 _Fjg 2
Consider the two-dimensional generalization of the model (6), which occurs when the chemical
potential deviation from the set value is proportional to the binding energy, we have:

X = K -
" (%, +b)2 (e +1)

b +Vi, VYia=/0X%
(7
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Figure 2: Bifurcation diagram "four rats", which contains specific zones of chaotic behavior.

Calculations made with model (6) at b =1n137.035999

Model (7) has a number of interesting properties. In  the range

b, =b=1In137; f=-0.63,800 < K <4840 model has a solution, similar to a

strange attractor, as described in [10-11] and others - see Fig. 3. In the parameter range

b =1n137;b, =b/137; f =-1.000%; K >0 the solution have a form of some

geometric figure, apparently indicating the phase transitions in the system of nucleons - Fig. 4.

Finally, we consider the solution of equation (7) in the one dimension case, i.e. with parameters

B =0y =0 b=In137;b, =b/137 ¢ which the figures shown in Fig. 4 have been
calculated. In this case, equation (6) and (7) differ only in the magnitude of the constant on the
right side of these equations. Nevertheless, their bifurcation diagrams differ quite significantly -
compare Fig. 3 and 5. For the solutions of equation (7) for the indicated values of the parameters
of the bifurcation diagram has only two branches. In the vicinity of the bifurcation point there is

thickening of the solutions that form the line spectrum of energy - Fig. 5.
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Figure 3: The strange attractor arising in the model (7) in the range of parameters

b, =b=1In137; p=-0.63;800 <K <4840

Thus, we have shown that the system of nucleons in nuclei at finite temperature phase transitions
can be observed due to the mutual influence of changes in energy and chemical potential, as well
as a line spectrum of energy and chaos that previously observed in the model [6].
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Figure 4: The characteristic shapes that form in the plane of the system (7), describing the energy
and chemical potential of nucleons at a constant temperature in the range of parameters
b=1In137;b, =b/137; #=-1.0001;1< K < 200
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Figure 5: The bifurcation diagram with the line spectrum of energy. Calculations made with the

model (7)at B = 0 ¥i =0 4 0 =1n137; b, =b/137
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